
Eur. Phys. J. B 55, 333–336 (2007)
DOI: 10.1140/epjb/e2007-00061-3 THE EUROPEAN

PHYSICAL JOURNAL B

Nonequilibrium fluctuation induced escape from a metastable
state

J. Ray Chaudhuri1,a, D. Barik2,b, and S.K. Banik3,c

1 Department of Physics, Katwa College, Katwa, Burdwan 713130, West Bengal, India
2 Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
3 Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA

Received 10 January 2007
Published online 2 March 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. Based on a simple microscopic model where the bath is in a non-equilibrium state we study
the escape from a metastable state in the over-damped limit. Making use of Fokker-Planck-Smoluchowski
description we derive the time dependent escape rate in the non-stationary regime in closed analytical
form which brings on to fore a strong non-exponential kinetic of the system mode.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ey
Stochastic processes

The problem of activated rate processes deals with the es-
cape of a Brownian particle from a metastable state under
the influence of thermal fluctuations generated by the im-
mediate surrounding to which the Brownian particle is in
close contact. Based on nonequilibrium statistical mechan-
ics Kramers [1] proposed a framework for the phenomenon
which over several decades became a standard paradigm
for theoretical and experimental investigation in many ar-
eas of natural science [2–6]. To the best of our knowledge
majority of the post Kramers developments of the theory
have been made in the stationary domain with few ap-
proaches in the non-stationary regime within the frame-
work of reactive flux formalism [2]. However, few attempts
have been made to deal the problem using nonequilibrium,
non-stationary formalism [7–9].

In their work Millonas and Ray [7] proposed a the-
oretical framework for studying the dynamics of escape
rate from a metastable state in the over-damped limit.
Because of the nonequilibrium fluctuations of the bath
mode an in built fluctuating barrier appears in the effec-
tive potential of the nonlinear Langevin equation of the
system variable. Using path integral formalism the au-
thors then derived a time dependent escape rate. Moti-
vated by this work [7] we prescribe here an alternative
method to derive the time dependent escape rate using
the Fokker-Planck-Smoluchowski description. The object
of the present work is twofold: first, to consider a sim-
ple variant of system-bath model [7] to study the acti-
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vated rate processes, where the associated heat bath is in
nonequilibrium state. The model incorporates some of the
essential features of Langevin dynamics with a fluctuat-
ing barrier which has been phenomenologically proposed
earlier [7,10]. Second, since the theories of activated rate
processes traditionally deal with stationary bath, the non-
stationary activated rate processes have remained largely
overlooked so far. We specifically address this issue and
examine the influence of initial excitation and subsequent
relaxation of bath modes on the activation of the reac-
tion coordinates within the framework of Fokker-Planck-
Smoluchowski equation. In spite of the fact that our de-
velopment bears a close kinship with the work of Millonas
and Ray [7], it is crucial to highlight that while Millonas
and Ray have used an explicit path integral approach to-
wards the solution of the problem, we, on the contrary,
implement a naive differential equation based approach
which leads us to a closed analytical expression for the
time-dependent escape rate. We also mention that in this
work we have explicitly calculated the non-exponential ki-
netics of the system mode, where the associated bath is
not in thermal equilibrium. The closed form of the final
expression of our approach brings with it the twin advan-
tages of being capable of (1) handling the non-stationary
phenomena, and (2) tracing the trajectory of how a system
coupled with a non-equilibrium bath reaches the station-
ary state in a computationally economic manner.

To make the present work self consistent we describe
the essential features of the model proposed by Millonas
and Ray [7]. The physical situation that has been ad-
dressed is the following. At t = 0−, the time just be-
fore the system and the bath are subjected to an external
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excitations, the system is approximately thermalized. At
t = 0, the excitation is switched on and the bath is thrown
into a non-stationary state which behaves as a nonequi-
librium bath. We follow the stochastic dynamics of the
system mode after t > 0. The important separation of the
time scale of the fluctuations of the nonequilibrium bath
and the thermal bath is that the former effectively remains
stationary on the fast correlation time scale of the thermal
noise.

The model consists of a system mode coupled to a
set of relaxing modes considered as a semi-infinite dimen-
sional system ({qk}-subsystem) which effectively consti-
tutes a nonequilibrium bath. This, in turn, is in contact
with a thermally equilibrated bath. Both the baths are
composed of two sets of harmonic oscillators characterized
by the frequency sets {ωk} and {Ωj} for the nonequilib-
rium and equilibrium baths, respectively. The system-bath
combination evolves under the total Hamiltonian [7]
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The first two terms on the right hand side describe the sys-
tem mode. The Hamiltonian for the thermal and nonequi-
librium baths are described by the sets {Qj, Pj} and
{qj, pj} for coordinate and momenta, respectively. The
coupling terms containing κj refer to the usual system-
bath linear coupling. The last two terms indicate the cou-
pling of the nonequilibrium bath to the system and the
thermal bath modes, respectively. In the present prob-
lem H is considered to be classical and the temperature
T is high for the thermally activated problem, so that the
quantum effects do not play any significant role. For sim-
plicity we take mass, m = 1 in equation (1) and for the rest
of the treatment. The form of the nonequilibrium bath, a
set of phonons, is chosen for both simplicity and because
of its generic relationship to many condensed matter sys-
tems.

Elimination of equilibrium reservoir variables {Qj, Pj}
in an appropriate way we have the equation of motion for
the nonequilibrium bath modes as [8,11,12]

q̈k + γq̇k + ω2
kqk = g(x) + ηk(t). (2)

This takes into account the average dissipation (γ) of the
nonequilibrium bath modes qk due to their coupling to the
thermal bath which induces fluctuations ηk(t) character-
ized by 〈ηk(t)〉 = 0 and 〈ηj(t)ηk(t′)〉 = 2γkBTδ(t− t′)δjk.
In moving from equations (1) to (2) the cross terms of the
form

∑
j γkjqj has been neglected for j �= k. Proceeding

similarly to eliminate the thermal bath variables from the
equation of motion of the system mode, we get

ẍ + γeq ẋ + V ′(x) = ξeq(t) + g′(x)
∑

k

qk, (3)

where γeq refers to the dissipation coefficient of the system
mode due to its coupling to the thermal bath providing

fluctuations ξeq(t) with the properties,

〈ξeq(t)〉 = 0, 〈ξeq(t)ξeq(t′)〉 = 2γeqkBTδ(t− t′). (4)

Now making use of the formal solution of equation (2)
which takes into account of the relaxation of the nonequi-
librium modes, and integrating over the nonequilibrium
modes with a Debye type frequency distribution of the
form

D(ω) = 3ω2/2ω3
c for |ω| ≤ ωc

= 0 for |ω| > ωc

where ωc is the high frequency Debye-cut-off, we finally
arrive at the following Langevin equation of motion for
the system mode,

ẍ + Γ (x)ẋ + Ṽ ′(x) = ξeq(t) + g′(x)ξneq(t). (5)

Here Γ (x) is a system coordinate dependent dissipation
constant and is given by

Γ (x) = γeq + γneq[g′(x)]2 (6)

and ξneq(t) refers to the fluctuations of the nonequilibrium
bath modes which effectively cause a damping of the sys-
tem mode by an amount γneq[g′(x)]2. Equation (5) also
includes the modification of the bare potential V (x)

Ṽ (x) = V (x) − ωc

π
γneqg

2(x). (7)

Equation (5) thus describes the effective dynamics of a
particle in a modified barrier, where the metastability of
the well originates from the dynamic coupling g(x) of the
system mode with the nonequilibrium bath modes.

In order to define the dynamics described by equa-
tion (5) completely it is necessary to state the properties of
the fluctuations of the nonequilibrium bath ξneq(t), which
is assumed to be Gaussian with zero mean 〈ξneq(t)〉 = 0.
Also the essential properties of ξneq(t) explicitly depend
on the nonequilibrium state of the intermediate oscilla-
tor modes {qk} through u(ω, t), the energy density dis-
tribution function at time t in terms of the fluctuation-
dissipation relation for the nonequilibrium bath [7]

u(ω, t) =
1

4γneq

∫ +∞

−∞
dτ〈ξneq(t)ξneq(t + τ)〉eiωτ

=
1
2
kBT + e−γt/2

[
u(ω, 0) − 1

2
kBT

]
, (8)

where [u(ω, 0) − kBT/2] is a measure of departure of en-
ergy density from thermal average at t = 0. The expo-
nential term implies that deviation due to the initial ex-
citation decays asymptotically to zero as t → ∞, so that
one recovers the usual fluctuation-dissipation relation for
the thermal bath. With the above specification of corre-
lation function of ξneq , Equation (8) thus attributes the
non-stationary character of {qk}-subsystem.

On time scales larger than the inverse friction coef-
ficient 1/γeq, we can in most particular cases consider
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the over-damped limit of the Langevin equation. This in
turn corresponds to the adiabatic elimination of the fast
variables, inertia term, from the equation of motion by
putting ẍ = 0 for homogeneous systems. In contrast, for
the case of inhomogeneous system the above method of
elimination does not work properly and Sancho et al. [13]
have given a proper prescription for the elimination of fast
variables. Using the method of Sancho et al. the formal
master equation for the probability density of the process
P (x, t) = 〈ρ(x, t)〉 is given by
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where r = {[u(ω → 0, 0)/2kBT ] − 1} is a measure
of the deviation from equilibrium at the initial instant.
Equation (9) is the Fokker-Planck-Smoluchowski equation
where the associated bath is in nonequilibrium state, and
is the first key result of this paper. Under stationary condi-
tion (at t → ∞) ∂P/∂t = 0 and the stationary distribution
obeys the equation

kBT
dPst(x)

dx
+ Ṽ ′(x)Pst(x) = 0 (10)

which has the solution

Pst(x) = N exp
[
− 1

kBT

∫ x

Ṽ ′(x′)dx′
]

(11)

where N is the normalization constant. In ordinary
Stratonovich description the Langevin equation corre-
sponding to the Fokker-Planck-Smoluchowski equation (9)
is given by

ẋ = − Ṽ ′(x)
Γ (x)

− D(t)g′′(x)g′(x)
Γ 2(x)

+
1

Γ (x)
ξeq(t)+
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(12)
where

D(t) = γneqkBT (1 + γe−γt/2) (13)

is the time-dependent diffusion constant due to the relax-
ation of nonequilibrium bath. Using equations (9) or (12)
the escape rate from a metastable state can be calculated
via steepest descent method [14]

k =
ω̃0ω̃b

2πΓ (xb)
exp

(
− Ẽb

kBT

)
(14)

where k is the Kramers activation rate, with Ẽb =
Ṽ ′(xb) − Ṽ ′(x0) is the modified activation energy and
ω̃b = [Ṽ ′′(xb)]1/2, ω̃0 = [Ṽ ′′(x0)]1/2 are the modified fre-
quencies at the barrier top and the bottom of the potential
well, respectively. xb denotes the position of the barrier top
and x0 is the position of the bottom of the potential well.

In equation (14) Γ has been evaluated at the top of the
barrier. In the absence of the nonequilibrium bath (14)
reduces to standard Kramers’ expression [1],

k =
ω0ωb

2πγ
exp

(
− Eb

kBT

)
. (15)

To obtain the time dependent rate k(t), let us consider
that the time dependent solution of equation (9) is given
by

P (x, t) = Pst(x)e−φ(t) (16)

where φ is a function of t only and limt→∞ φ(t) = 0. Pst(x)
is the steady state solution of equation (9). Substitution
of (16) in (9) separates the space and time parts and we
have the equation for φ(t) as

−dφ

dt
eγt/2 = const. = α(say) (17)

which after integration over time gives

φ(t) =
2α

γ
e−γt/2 (18)

where α can be determined by initial condition. The time
dependent solution of equation (9) therefore reads

P (x, t) = Pst(x) exp
[
−2α

γ
e−γt/2

]
. (19)

To determine α we now assume that [8] just at the mo-
ment the system (and the non-thermal bath) is subjected
to external excitation at t = 0, the distribution must co-
incide with the usual Boltzmann distribution where the
energy term in the Boltzmann factor in addition to the
usual kinetic and potential energy terms, contains the ini-
tial fluctuations of energy density ∆u[=u(ω, 0) − kBT/2]
due to excitation of the system at t = 0. This gives
α = (γ/2)(∆u/kBT ). α is thus determined in terms of
relaxing mode parameters and fluctuations of the energy
density distribution at t = 0. The time dependent rate is
then derived as [14]

k(t) = k exp
[
− ∆u

kBT
e−

γ
2 t

]
(20)

where ∆u is the measure of the initial departure from the
average energy density distribution due to the prepara-
tion of the non-stationary state of the intermediate bath
modes as a result of excitation at t = 0 and k is given by
equation (14). The above result, equation (20), which is
the second key result of this paper, illustrates a strong non-
exponential kinetic of the system mode undergoing a non-
stationary activated rate processes in the over-damped
regime. The origin of this is an initial preparation of
nonequilibrium mode density distribution which eventu-
ally relaxes to an equilibrium distribution. Equation (20)
implies that the initial transient rate is different from
the asymptotic steady state Kramers’ rate. The sign of
∆u determines whether the initial rate will be faster or
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slower than the steady state rate. This is because there
exists a time lag for the non-thermal energy gained by the
few nonequilibrium modes by sudden excitation to be dis-
tributed over a range before it becomes available to the
reaction coordinate as thermal energy for activation.

In conclusion, based on a system-reservoir model,
where the reservoir is in a non-equilibrium state, we have
provided an analytic model to derive the closed time-
dependent escape rate from a metastable state induced
by non-equilibrium fluctuations. We have explicitly cal-
culated the non-exponential kinetics of the system mode,
where the associated bath is not in thermal equilibrium.
Our methodology takes care of the non-stationary phe-
nomena, and simultaneously traces the barrier dynamics
of a system when it is coupled with a non-equilibrium
bath. Not only that our approach may serve as a potential
avenue towards the explanation of non-stationary trans-
port processes and rachet problems envisaged in various
chemically and biologically interesting systems. The work
in this direction is in progress in our group.
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